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Developmental defects of tooth enamel are prevalent and can origi-
nate during prenatal, neonatal, and postnatal periods of tooth devel-
opment (odontogenesis). Well over 100 environmental and genetic
factors have been associated with developmental defects of tooth
enamel.1 Among environmental factors examined in depth are sys-
temic exposure to fluoride (dental fluorosis) and polychlorinated
biphenyls.2,3 In a new study in Environmental Health Perspectives,
Bui et al.4 followed up on their earlier investigations of endocrine-
disrupting compounds (specifically bisphenols) impacting tooth
development.5–8 Here the authors focused on developmental dis-
turbances of enamel formation resulting from long-term expo-
sures to di-(2-ethylhexyl) phthalate (DEHP), a plasticizer that is
widely present in the environment and also has endocrine-
disrupting properties.9,10 The authors’ use of mice to study the
effects of endocrine disruptors during odontogenesis is a wise
choice for a number of reasons, including continuous enamel for-
mation (amelogenesis) throughout the mouse’s life.

In the new study, adult C57BL/6J male and female mice were
exposed to varying doses of DEHP in their food for 12 wk. DEHP
was adjusted for body weight to keep exposures within the limits
established for total dietary intake by the European Food Safety
Authority.11 The authors observed clinically visible incisor enamel
defects, including opacities and loss of color, as well as reduced
mineral densities and enamel hardness. They attributed the latter to
delayed enamel mineralization caused by DEHP. This study is
largely descriptive and shows dose-dependent effects, but it also
identifies sexual dimorphism, with the teeth of males affectedmore
than those of females.

Much of our understanding of odontogenesis comes from studies
of mice. Odontogenesis requires epithelial–mesenchymal interac-
tions; differentiation of precursors of odontoblasts and ameloblasts,
which form the dentin and enamel, respectively; and distinct miner-
alization processes leading to dentin and enamel development.12

Studies in rodents have also identified the presence of steroid hor-
mone receptors during amelogenesis.7,13 This is highly relevant to
the work of Bui et al.4

A challenge in investigating how environmental toxicants,
such as phthalates, disturb tooth and enamel development in
humans stems from the fact that odontogenesis begins during the
embryonic period and is concealed within bone. In humans, pri-
mary (deciduous) teeth begin their morphogenesis journey at
∼ 6 wk of gestation. Mineralization of primary teeth begins at

∼ 4months of gestation for central incisors, lateral incisors, can-
ines, and first and second molars. The fully formed primary teeth
erupt into the oral cavity between 6 (central incisors) and 30 (molars)
months of age.14 Development of permanent teeth follow their own
chronology and eruption schedule. It is only after teeth erupt into the
mouth that the impact of exposures to environmental toxicants on
human tooth and enamel development can be visualized.

Rodents, on the other hand, have continuously erupting inci-
sors. In mice, the wear and growth of incisors is generally in equi-
librium. In adult mice, incisors grow approximately 2 mm=wk,
with a complete turnover of the incisors in approximately 5–9
wk.15 This allows exposure studies to occur during postnatal peri-
ods in mice and to target the different stages of enamel formation
within a short period of time. In addition, mice have several unique
characteristics that permit mechanistic studies of tooth formation.
First, both inbred mouse strains and genetically diverse lines of
mice can be used to dissect genetic pathways and networks fol-
lowing environmental exposures. Certain inbred strains of mice
respond differentially to environmental exposures (e.g., dental
fluorosis following fluoride exposure16), whereas genetically
modified mice are readily available or can be created to provide
useful tools for investigating particular pathways and networks.

The work of Bui et al.4 requires further investigations to better
understand the sexual dimorphism observed. For example, the
social nature of male micemay differ from that of femalemice, and
males’ greater need to gnaw on cagingmight be a factor in damage
to the incisors. Because DEHP can have a systemic effect, it
remains possible that the phenotype present in the erupting incisors
is due to altered mineral homeostasis, altered renal function, or en-
docrine disturbances. These possibilities require further investiga-
tion. Finally, future studies might assess whether amelogenesis
returns to normal whenDEHP is removed from the diet. Such stud-
ies would provide insight into whether the stem cell pool giving
rise to ameloblasts may be altered due to DEHP exposure.
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